
Acta Cryst. (2014). A70, 203–216 doi:10.1107/S2053273314000217 203

research papers

Acta Crystallographica Section A

Foundations and
Advances

ISSN 2053-2733

Received 1 September 2013

Accepted 5 January 2014

Dedicated to my friend and colleague Javier

‘Roli’ Bracho on the occasion of his 60th

birthday.

# 2014 International Union of Crystallography

Polyhedra, complexes, nets and symmetry1

Egon Schulte

Northeastern University, Department of Mathematics, Boston, MA 02115, USA. Correspondence

e-mail: schulte@neu.edu

Skeletal polyhedra and polygonal complexes in ordinary Euclidean 3-space are

finite or infinite 3-periodic structures with interesting geometric, combinatorial

and algebraic properties. They can be viewed as finite or infinite 3-periodic

graphs (nets) equipped with additional structure imposed by the faces, allowed

to be skew, zigzag or helical. A polyhedron or complex is regular if its geometric

symmetry group is transitive on the flags (incident vertex–edge–face triples).

There are 48 regular polyhedra (18 finite polyhedra and 30 infinite apeirohedra),

as well as 25 regular polygonal complexes, all infinite, which are not polyhedra.

Their edge graphs are nets well known to crystallographers and they are

identified explicitly. There are also six infinite families of chiral apeirohedra,

which have two orbits on the flags such that adjacent flags lie in different orbits.

1. Introduction

Polyhedra and polyhedra-like structures in ordinary Eucli-

dean 3-space E3 have been studied since the early days of

geometry (Coxeter, 1973). However, with the passage of time,

the underlying mathematical concepts and treatments have

undergone fundamental changes.

Over the past 100 years we can observe a shift from the

classical approach, viewing a polyhedron as a solid in space, to

topological approaches focusing on the underlying maps on

surfaces (Coxeter & Moser, 1980), to combinatorial approa-

ches highlighting the basic incidence structure but deliberately

suppressing the membranes that customarily span the faces to

give a surface.

These topological and combinatorial perspectives are

already appearing in the well known Kepler–Poinsot poly-

hedra and Petrie–Coxeter polyhedra (Coxeter, 1937, 1973).

They underlie the skeletal approach to polyhedra proposed in

Grünbaum (1977) and Grünbaum & Bracho (1978) that has

inspired a rich new theory of geometric polyhedra and

symmetry (Dress, 1981, 1985; McMullen & Schulte, 1997, 2002;

McMullen, 2014).

The polygonal complexes described in this paper form an

even broader class of discrete skeletal-space structures than

polyhedra. Like polyhedra they are comprised of vertices,

joined by edges, assembled in careful fashion into polygons,

the faces, allowed to be skew or infinite (Pellicer & Schulte,

2010, 2013, 2014). However, unlike in polyhedra, more than

two faces are permitted to meet at an edge.

The regular polygonal complexes in E3 are finite structures

or infinite 3-periodic structures with crystallographic sym-

metry groups exhibiting interesting geometric, combinatorial

and algebraic properties. This class includes the regular

polyhedra but also many unfamiliar figures, once the planarity

or finiteness of the polygonal faces is abandoned. Because of

their skeletal structure, polygonal complexes are of natural

interest to crystallographers.

Regular polyhedra traditionally play a prominent role in

crystal chemistry (Wells, 1977; O’Keeffe & Hyde, 1996;

Delgado-Friedrichs et al., 2005; O’Keeffe et al., 2008; O’Keeffe,

2008). There is considerable interest in the study of 3-periodic

nets and their relationships to polyhedra. Nets are 3-periodic

geometric graphs in space that represent crystal structures, in

the simplest form with vertices corresponding to atoms and

edges to bonds. The edge graphs of almost all regular poly-

gonal complexes in E3 are highly symmetric nets, with the

only exceptions arising from the polyhedra which are not

3-periodic. We explicitly identify the nets by building on the

work of O’Keeffe (2008) and exploiting the methods devel-

oped in Delgado Friedrichs et al. (2003a,b).

Symmetry of discrete geometric structures is a frequently

recurring theme in science. Polyhedral structures occur in

nature and art in many contexts that a priori have little

apparent relation to regularity (Fejes Tóth, 1964; Senechal,

2013). Their occurrence in crystallography as crystal nets is a

prominent example. See also Wachmann et al. (2005) for an

interesting architecture-inspired study of polyhedral struc-

tures that features a wealth of beautiful illustrations of figures

reminiscent of skeletal polyhedral structures.

The present paper is organized as follows. In x2 we inves-

tigate basic properties of polygonal complexes, polyhedra and

nets, in particular focusing on structures with high symmetry.

x3 is devoted to the study of the symmetry groups of regular

polygonal complexes as well as chiral polyhedra. In xx4 and 5

we review the complete classification of the regular and chiral

polyhedra following McMullen & Schulte (2002, ch. 7E) and

Schulte (2004, 2005), respectively. Finally x6 describes the

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014.
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classification of the regular polygonal complexes (Pellicer &

Schulte, 2010, 2013). Along the way we determine the nets of

all 3-periodic regular polygonal complexes.

Skeletal regular polyhedra and polytopes have also been

studied in higher-dimensional Euclidean spaces. For more

details, the reader is referred to McMullen (2004, 2014),

Arocha et al. (2000) and Bracho (2000).

2. Polyhedra, complexes and nets

Polygonal complexes are geometric realizations in E
3 of

abstract incidence complexes of rank 3 with polygon faces,

that is, of abstract polygonal complexes (Danzer & Schulte,

1982). We elaborate on this aspect in x2.1. Here we will not

require familiarity with incidence complexes. However, occa-

sionally it is useful to bear this perspective in mind. Polyhedra

are the polygonal complexes with just two faces meeting at an

edge.

2.1. Polygonal complexes

Following Grünbaum (1977), a finite polygon, or an n-gon

(with n � 3), consists of a sequence ðv1; v2; . . . ; vnÞ of n

distinct points in E
3, as well as of the line segments

ðv1; v2Þ; ðv2; v3Þ; . . . ; ðvn�1; vnÞ and ðvn; v1Þ. Note that we are

not making a topological disc spanned into the polygon part of

the definition of a polygon. In particular, unless stated

otherwise, the term ‘convex polygon’ refers only to the

boundary edge path of what is usually called a convex

polygon; that is, we ignore the interior.

A (discrete) infinite polygon, or apeirogon, similarly consists

of an infinite sequence of distinct points ð. . . ; v�2; v�1,

v0; v1; v2; . . .Þ in E3, as well as of the line segments ðvi; viþ1Þ for

each i, such that each compact subset of E3 meets only finitely

many line segments.

In either case the points are the vertices and the line

segments the edges of the polygon.

Following Pellicer & Schulte (2010), a polygonal complex,

or simply a complex,K in E3 is a triple ðV; E;F ) consisting of a

set V of points, called vertices, a set E of line segments, called

edges, and a set F of polygons, called faces, satisfying the

following properties:

(a) The graph ðV; EÞ, the edge graph of K, is connected.

(b) The vertex-figure of K at each vertex of K is connected.

By the vertex-figure of K at a vertex v we mean the graph,

possibly with multiple edges, whose vertices are the vertices of

K adjacent to v and whose edges are the line segments ðu;wÞ,

where ðu; vÞ and ðv;wÞ are edges of a common face of K.

[There may be more than one such face in K, in which case

the corresponding edge ðu;wÞ of the vertex-figure at v has

multiplicity given by the number of such faces.]

(c) Each edge of K is contained in exactly r faces of K, for a

fixed number r � 2.

(d) K is discrete, in the sense that each compact subset of E3

meets only finitely many faces of K.

A (geometric) polyhedron in E3 is a polygonal complex with

r ¼ 2. Thus, a polyhedron is a complex in which each edge lies

in exactly two faces. The vertex-figures of a polyhedron are

finite (simple) polygonal cycles. An infinite polyhedron in E3 is

also called an apeirohedron.

A simple example of a polyhedron is shown in Fig. 1. This is

the ‘Petrie dual’ of the cube obtained from the ordinary cube

by replacing the square faces with the Petrie polygons while

retaining the vertices and edges. Recall here that a Petrie

polygon, or 1-zigzag, of a polyhedron is a path along the edges

such that any two, but no three, consecutive edges belong to a

common face. The Petrie polygons of the cube are skew

hexagons and there are four of them. Hence the polyhedron in

Fig. 1 has eight vertices, 12 edges and four skew hexagonal

faces, with three faces coming together at each vertex.

Polyhedra are the best studied class of polygonal complexes

and include the traditional convex polyhedra and star-

polyhedra in E3 (Coxeter, 1973; Grünbaum, 1977, 1994, 1999;

McMullen & Schulte, 2002; McMullen, 2014). When viewed

purely combinatorially, the set of vertices, edges and faces of a

geometric polyhedron, ordered by inclusion, is an abstract

polyhedron, or an abstract polytope of rank 3. More generally,

the underlying combinatorial ‘complex’ determined by the

vertices, edges and faces of any polygonal complexK [given by

the triple ðV; E;F )], ordered by inclusion, is an incidence

complex of rank 3 in the sense of Danzer & Schulte (1982).

Here the term ‘rank’ refers to the ‘combinatorial dimension’

of the object; thus, rank-3 complexes are incidence structures

made up of objects called vertices (of rank 0), edges (of rank

1) and faces (of rank 2), in a purely combinatorial sense.

An easy example of an infinite polygonal complex in E3

which is not a polyhedron is given by the vertices, edges and

square faces of the standard cubical tessellation C (see Fig. 2).

This complex K is called the 2-skeleton of C; each edge lies in

four square faces so r ¼ 4. The tiles (cubes) of C are irrelevant

in this context. A finite complex with r ¼ 3 can similarly be

derived from the 2-skeleton of the 4-cube projected (as a

Schlegel diagram) into E3.

The cubical tessellation C in E3 gives rise to several other

interesting complexes. For example, the family of all Petrie

polygons of all cubes in C gives the (hexagonal) faces of a

polygonal complex in which every edge belongs to exactly

eight faces; the vertices and edges are just those of C. This is

the complex K6ð1; 2Þ appearing in Table 8 later on. Note here

that every edge of a cube in C belongs to precisely two Petrie
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Figure 1
The Petrie dual of the cube. Shown are its four faces (in red, blue, green
and black). The faces are the Petrie polygons of the cube.



polygons of this cube; since every edge of C belongs to four

cubes in C, every edge of C must belong to eight Petrie poly-

gons of cubes so r ¼ 8.

If only the Petrie polygons of alternate cubes in C are taken

as faces, we obtain a ‘subcomplex’ in which every edge belongs

to exactly four hexagonal faces so then r ¼ 4.

The set of vertices, edges and triangular faces of a

cuboctahedron is not a polygonal complex; each edge lies in

only one face and the vertex-figures are not connected.

Although our terminology could be adapted to cover poly-

gonal structures in which some edges lie only in one face (as in

this last example), we will explicitly exclude them here.

Moreover, as we are mainly interested in highly symmetric

structures, our definition includes the homogeneity condition

(c). This condition is automatically satisfied for any polygonal

structures with sufficiently high symmetry (for example, as

given by the edge-transitivity of the symmetry group),

provided at least two faces meet at an edge.

However, for an investigation of polygonal structures

regardless of symmetry it is useful to replace part (c) in the

definition of a polygonal complex by the following weaker

requirement:

(c0) Each edge of K is contained in at least two faces of K.

In this paper we will not require any of these modifications.

2.2. Highly symmetric complexes

There are several distinguished classes of highly symmetric

polygonal complexes, each characterized by a distinguished

transitivity property of the symmetry group. Some of these

classes have analogs in the traditional theory of polyhedra but

others feature characteristics that do not occur in the classical

theory.

We let GðKÞ denote the symmetry group of a polygonal

complexK, that is, the group of all Euclidean isometries of the

affine hull of K that map K to itself. (Except when K is planar,

this affine hull is E3 itself.)

The most highly symmetric polygonal complexes K are

those that we call regular, meaning that the symmetry group

GðKÞ is transitive on the flags of K. A flag of K is an incident

triple consisting of a vertex, an edge and a face of K.

Two flags of K are called j-adjacent if they differ precisely in

their elements of rank j, that is, their vertices, edges or faces if

j ¼ 0, 1 or 2, respectively. Flags are j-adjacent to only one

flag if j ¼ 0 or 1, or precisely r� 1 flags if j ¼ 2. For example,

in the 2-skeleton of the cubical tessellation (with r ¼ 4) shown

in Fig. 2 every flag has exactly three 2-adjacent flags. For

polyhedra, every flag has one j-adjacent flag for every

rank j.

The faces of a regular polygonal complex are (finite or

infinite) congruent regular polygons in E
3, with ‘regular’

meaning that their geometric symmetry group is transitive on

the flags of the polygon. (A flag of a polygon is an incident

vertex-edge pair.)

Note that regular polygons in E3 are necessarily of one of

the following kinds: finite, planar (convex or star-) polygons or

non-planar (skew) polygons; (infinite) apeirogons, either

planar zigzags or helical polygons; or linear polygons, either a

line segment or a linear apeirogon with equal-sized edges

(Grünbaum, 1977; Coxeter, 1991). We can show that linear

regular polygons do not occur as faces of regular polygonal

complexes.

We call a polygonal complex K semiregular (or uniform) if

the faces of K are regular polygons (allowed to be non-planar

or infinite) and GðKÞ is transitive on the vertices.

A polygonal complex K is said to be vertex-transitive, edge-

transitive or face-transitive if GðKÞ is transitive on the vertices,

edges or faces, respectively. A complex which is vertex-

transitive, edge-transitive and face-transitive is called totally

transitive. Every regular complex is totally transitive, but not

vice versa. We call K a 2-orbit polygonal complex if K has

precisely two flag orbits under the symmetry group (Hubard,

2010; Cutler & Schulte, 2011).

2.3. Chiral polyhedra

Chiral polyhedra are arguably the most important class of

2-orbit complexes. A (geometric) polyhedron K is chiral if

GðKÞ has exactly two orbits on the flags such that any two

adjacent flags are in distinct orbits (Schulte, 2004, 2005). This

notion of chirality for polyhedra is different from the standard

notion of chirality used in crystallography, but is inspired by it.

The proper setting is that of a ‘chiral realization’ in E3 of an

abstractly chiral or regular abstract polyhedron, where here

abstract chirality or regularity are defined as above, but now

in terms of the combinatorial automorphism group of the

abstract polyhedron, not the geometric symmetry group. In a

sense that can be made precise, abstract chiral polyhedra

occur in a ‘left-handed’ and a ‘right-handed’ version (Schulte

& Weiss, 1991, 1994), although this handedness is combina-

torial and not geometric.

Thus a chiral geometric polyhedron has maximum

symmetry by ‘combinatorial rotation’ (but not by ‘combina-

torial reflection’), and has all its ‘rotational’ combinatorial

symmetries realized by Euclidean isometries (but not in

general by Euclidean rotations). A regular geometric poly-

hedron has maximum symmetry by ‘combinatorial reflection’,

and has all its combinatorial symmetries realized by Euclidean

isometries.
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Figure 2
The 2-skeleton of the cubical tessellation. Each edge lies in four square
faces.



2.4. Nets

Nets are important tools used in the modeling of 3-periodic

structures in crystal chemistry and materials science. A net in

E
3 is a 3-periodic connected (simple) graph with straight edges

(Delgado-Friedrichs & O’Keeffe, 2005; Wells, 1977). Recall

here that a figure in E3 is said to be 3-periodic if the translation

subgroup of its symmetry group is generated by translations in

three independent directions.

Highly symmetric nets often arise as the edge graphs (the

graphs formed by the vertices and edges) of 3-periodic higher-

rank structures in E
3 such as three-dimensional tilings,

apeirohedra and infinite polygonal complexes. Note that the

combinatorial automorphism group of a net N can be larger

than its geometric symmetry group GðN Þ. The underlying

abstract infinite graph of a net can often be realized in several

different ways as a net in E3, and there is a natural interest in

finding the maximum-symmetry realization of this graph as a

net.

The Reticular Chemistry Structure Resource (RCSR)

database located at http://rcsr.anu.edu.au contains a rich

collection of crystal nets including in particular the most

symmetric examples (O’Keeffe et al., 2008). It has become

common practice to denote a net by a bold-faced three-letter

symbol such as abc. Examples are described below. The

symbol is often shorthand for a ‘famous’ compound repre-

sented by the net, or for the finer geometry of the net. A net

can represent many compounds. Newly discovered nets tend

to be named after the person(s) who discovered the net (using

initials etc.). Many nets have ‘alternative symbols’ but we will

not require them here.

While the RCSR database contains information about 2000

named nets, TOPOS is a more recent research tool for the

geometrical and topological analysis of crystal structures with

a database of more than 70 000 nets (Blatov, 2012); it is

currently under further development by Vladislav Blatov and

Davide Proserpio.

The nets N occurring in this paper are uninodal, meaning

that GðN Þ is transitive on the vertices (nodes) of N . For a

vertex v of a netN , the convex hull of the neighbors of v inN

is called the coordination figure of N at v.

The edge graph of each regular polygonal complex K is a

net referred to as the net of the complex. The identification of

the nets arising as edge graphs of regular polygonal complexes

is greatly aided by the fact that there already exists a classi-

fication of the nets in E3 that are called regular or quasiregular

in the chemistry literature (Delgado Friedrichs et al., 2003a,b,

2005). Although this terminology for nets is not consistent

with our terminology for polyhedral complexes, we will

maintain it for the convenience of the reader. Note that a net

of a regular complex may have symmetries which are not

symmetries of the complex.

A net N in E3 is called regular if N is uninodal and if, for

each vertex v of N , the coordination figure of N at v is a

regular convex polygon (in the ordinary sense) or a Platonic

solid whose own rotation symmetry group is a subgroup of the

stabilizer of v in GðN Þ (the site symmetry group of v in N ).

Here the rotation symmetry group of a regular convex

polygon is taken relative to E3 and is generated by two half-

turns in E3.

As pentagonal symmetry is impossible, the coordination

figures of a regular net must necessarily be triangles, squares,

tetrahedra, octahedra or cubes.

A net N is called quasiregular if N is uninodal and the

coordination figure of N at every vertex is a quasiregular

convex polyhedron. Recall that a quasiregular convex poly-

hedron in E3 is a semiregular convex polyhedron (with regular

faces and a vertex-transitive symmetry group) with exactly two

kinds of faces alternating around each vertex. There are only

two quasiregular convex polyhedra in E
3 (Coxeter, 1973),

namely the well known cuboctahedron 3.4.3.4 and icosidode-

cahedron 3.5.3.5, of which the latter cannot occur because of

its icosahedral symmetry. Thus the coordination figures of a

quasiregular net are cuboctahedra. Conversely, a uninodal net

with cuboctahedra as coordination figures is necessarily

quasiregular.

There are exactly five regular nets in E3, one per possible

coordination figure. Following O’Keeffe et al. (2008) and

Delgado Friedrichs et al. (2003a,b) these nets are denoted by

srs, nbo, dia, pcu and bcu; their coordination figures are

triangles, squares, tetrahedra, octahedra or cubes, respectively.

It is also known that there is just one quasiregular net in E3,

denoted fcu, with coordination figure a cuboctahedron. These

nets have appeared in many publications, often under

different names (O’Keeffe & Hyde, 1996; Delgado Friedrichs

et al., 2003a,b) and different contexts (Blatov et al., 2007;

Alexandrov et al., 2012).

The net srs is the net of strontium silicide, SrSi2, hence the

notation. It coincides with the ‘net (10,3)-a’ of Wells (1977),

the ‘Laves net’ of Pearce (1978), the ‘Y� lattice complex’

(Koch & Fischer, 1978; Fischer & Koch, 1983), the net ‘3/10/c1’

of Koch & Fischer (1995), as well as the ‘labyrinth graph of the

gyroid surface’ (Hyde & Ramsden, 2000). For an account on

the history of the srs net and its gyroid surface see also Hyde et

al. (2008). The notation nbo signifies the net of niobium

monoxide, NbO, and coincides with the lattice complex J� of

Koch & Fischer (1978). The net dia is the famous diamond net,

or ‘lattice complex D’ (Koch & Fischer, 1978), which is the net

of the diamond form of carbon. The names pcu, fcu and bcu

stand for the ‘primitive cubic lattice’ (the standard cubic

lattice), the ‘face-centered cubic lattice’ and the ‘body-

centered’ cubic lattice in E3, respectively; these are also known

as the lattice complexes cP, cI and cF, respectively.

In addition we will also meet the nets denoted acs, sod, crs

and hxg (O’Keeffe et al., 2008; O’Keeffe, 2008). The net acs is

named after Andrea C. Sudik (Sudik et al., 2005) and is

observed in at least 177 compounds (according to the TOPOS

database). The net sod represents the sodalite structure and

can be viewed as the edge graph of the familiar tiling of E3 by

truncated octahedra also known as the Kelvin structure

(Delgado-Friedrichs et al., 2005). The symbol crs labels the net

of the O atoms’ coordination in idealized beta-cristobalite, but

also represents at least ten other compounds (according to the

TOPOS database); the net is also known as dia-e and 3d-

research papers

206 Egon Schulte � Skeletal approach to polyhedra Acta Cryst. (2014). A70, 203–216



kagomè, and appears as the 6-coordinated sphere packing net

corresponding to the cubic invariant lattice complex T (Koch

& Fischer, 1978). Finally, hxg has a regular hexagon as its

coordination figure; its ‘augmented’ net (obtained by repla-

cing the original vertices by the edge graph of the coordination

figures) gives a structure representing polybenzene.

3. Symmetry groups of complexes and polyhedra

The symmetry groups G :¼ GðKÞ hold the key to the structure

of regular polygonal complexes K. They have a distinguished

generating set of subgroups G0;G1;G2 obtained as follows.

Via a variant of Wythoff’s construction (Coxeter, 1973), these

subgroups enable us to recover a regular complex from its

group.

3.1. Distinguished generators

Choose a fixed, or base, flag � :¼ fF0; F1;F2g of K, where

F0;F1;F2, respectively, denote the vertex, edge or face of the

flag. For i ¼ 0; 1; 2 let Gi denote the stabilizer of � n fFig in G;

this is the subgroup of G stabilizing every element of � except

Fi. For example, G2 consists of all symmetries of K fixing F0

and F1 and thus fixing the entire line through F1 pointwise.

Also, for � � � define G� to be the stabilizer of � in G,

that is, the subgroup of G stabilizing every element of �. Then

Gi is just GfFj;Fkg
for each i, where here fi; j; kg ¼ f0; 1; 2g.

Moreover, G� is the stabilizer of the base flag � itself. We also

write GFi
:¼ GfFig

for i ¼ 0; 1; 2; this is the stabilizer of Fi in G.

The subgroups G0;G1;G2 have remarkable properties. In

particular,

G ¼ hG0;G1;G2i

and

G0 \G1 ¼ G0 \G2 ¼ G1 \G2 ¼ G0 \G1 \G2 ¼ G�:

While these properties already hold at the abstract level of

incidence complexes (Schulte, 1983), the Euclidean geometry

of 3-space comes into play when we investigate the possible

size of the flag stabilizer G�. It turns out that there are two

possible scenarios.

In fact, either G� is trivial, and then the (full) symmetry

group G is simply flag-transitive; or G� has order 2, the

complex K has planar faces, and G� is generated by the

reflection in the plane of E3 containing the base face F2 of K.

In the former case we call K a simply flag-transitive complex.

In the latter case we say that K is non-simply flag-transitive, or

that K has face mirrors, since then the planes in E3 through

faces of K are mirrors (fixed-point sets) of reflection symme-

tries.

If K is a simply flag-transitive complex, then G0 ¼ hR0i and

G1 ¼ hR1i, for some point, line or plane reflection R0 and

some line or plane reflection R1; and G2 is a cyclic or dihedral

group of order r. (A reflection in a line is a half-turn about the

line.) Moreover,

GF0
¼ hR1;G2i; GF1

¼ hR0;G2i; GF2
¼ hR0;R1i ffi Dp;

where p is the number of vertices in a face of K and Dp

denotes the dihedral group of order 2p (allowing p ¼ 1).

SinceK is discrete, the stabilizer GF0
of F0 in G is necessarily a

finite group called the vertex-figure group of K at F0. In

particular, the vertex-figure group GF0
acts simply flag-

transitively on the finite graph forming the vertex-figure of K

at F0. (A flag of a graph is just an incident vertex-edge pair.)

If K is a non-simply flag-transitive complex, then

G0 ffi C2 � C2 ffi G1; G2 ffi Dr

and the vertex-figure group GF0
¼ hG1;G2i is again finite asK

is discrete.

3.2. The case of polyhedra

The theory is particularly elegant in the case when K is

a regular polyhedron. Then K is necessarily simply flag-

transitive and G2 is also generated by a reflection R2 in a point,

line or plane. Thus

G ¼ hR0;R1;R2i

and G is a discrete (generalized) reflection group in E3, where

here the term ‘reflection group’ refers to a group generated by

reflections in points, lines or planes.

A regular polyhedron has a (basic) Schläfli type fp; qg,

where as above p is the number of vertices in a given face and

q denotes the number of faces containing a given vertex;

here p, but not q, may be 1. The distinguished involutory

generators R0;R1;R2 of G satisfy the standard Coxeter-type

relations

R2
0 ¼ R2

1 ¼ R2
2 ¼ ðR0R1Þ

p
¼ ðR1R2Þ

q
¼ ðR0R2Þ

2
¼ 1;

but in general there are other independent relations too; these

additional relations are determined by the cycle structure of

the edge graph, or net, of K (McMullen & Schulte, 2002, ch.

7E).

For a chiral polyhedron K, the symmetry group G has two

non-involutory distinguished generators S1; S2 obtained as

follows. Let again � :¼ fF0;F1; F2g be a base flag, let F 00 be the

vertex of F1 distinct from F0, let F 01 be the edge of F2 with

vertex F0 distinct from F1, and let F 02 be the face containing F1

distinct from F2. Then the generator S1 stabilizes the base face

F2 and cyclically permutes the vertices of F2 in such a manner

that F1S1 ¼ F 01 (and F 00S1 ¼ F0), while S2 fixes the base vertex

F0 and cyclically permutes the vertices in the vertex-figure at

F0 in such a way that F2S2 ¼ F 02 (and F 01S2 ¼ F1). These

generators S1; S2 satisfy (among others) the relations

S
p
1 ¼ S

q
2 ¼ ðS1S2Þ

2
¼ 1; ð1Þ

where again fp; qg is the Schläfli type of K.

Two alternative sets of generators for G are given by fS1;Tg

and fT; S2g, where T :¼ S1S2 is the involutory symmetry of K

that interchanges simultaneously the two vertices of the base

edge F1 and the two faces meeting at F1. Combinatorially

speaking, T acts like a half-turn about the midpoint of the base

edge (but geometrically, T may not be a half-turn about a

line).
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3.3. Wythoff’s construction

Regular polygonal complexes and chiral polyhedra can be

recovered from their symmetry groups G by variants of the

classical Wythoff construction (Coxeter, 1973). Two variants

are needed, one essentially based on the generating subgroups

G0;G1;G2 of G and applying only to polygonal complexes

which are regular (McMullen & Schulte, 2002, ch. 5; Pellicer &

Schulte, 2010), and the other based on the generators S1; S2

and applying to both regular and chiral polyhedra. (To

subsume regular polyhedra under the latter case it is conve-

nient to set S1 :¼ R0R1, S2 :¼ R1R2 and T :¼ S1S2 ¼ R0R2.)

For regular polygonal complexes (including polyhedra),

Wythoff’s construction proceeds from the base vertex v :¼ F0,

the initial vertex, and builds the complex (or polyhedron)K as

an orbit structure, beginning with the construction of the base

flag. Relative to the set of generating subgroups, the essential

property of v is that it is invariant under all generating

subgroups but the first; that is, v is invariant under G1 and G2

but not G0. The base vertex, v, is already given. The vertex sets

of the base edge and base face of K are the orbits of v under

the subgroups G0 and hG0;G1i, respectively. This determines

the base edge as the line segment joining its vertices, and the

base face as an edge path joining its vertices in succession.

Once the base flag has been constructed, we simply obtain the

vertices, edges and faces of K as the images under G of the

base vertex, base edge or base face, respectively.

For chiral polyhedra K we can similarly proceed from the

alternative generators T; S2 of G, again choosing v :¼ F0 as

the initial (or base) vertex. Now the base edge and base face of

K are given by the orbits of v under hTi and hS1i, respectively;

and as before, the vertices, edges and faces of K are just the

images under G of the base vertex, base edge or base face,

respectively.

In practice, Wythoff’s construction is often applied to

groups that ‘look like’ symmetry groups of regular complexes

or chiral polyhedra. In fact, this approach then often enables

us to establish the existence of such structures. A necessary

condition in this case is the existence of a common fixed point

of G1 and G2, which then becomes the initial vertex.

4. Regular polyhedra

Loosely speaking, there are 48 regular polyhedra in E3, up to

similarity (that is, congruence and scaling). They comprise 18

finite polyhedra and 30 (infinite) apeirohedra. We follow the

classification scheme described in McMullen & Schulte (2002,

ch. 7E) and designate these polyhedra by generalized Schläfli

symbols that usually are obtained by padding the basic symbol

fp; qg with additional symbols signifying specific information

(such as extra defining relations for the symmetry group in

terms of the distinguished generators).

4.1. Finite polyhedra

The finite regular polyhedra are all derived from the five

Platonic solids: the tetrahedron f3; 3g, the octahedron f3; 4g,

the cube f4; 3g, the icosahedron f3; 5g and the dodecahedron

f5; 3g. In addition to the Platonic solids, there are the four

regular star-polyhedra, also known as Kepler–Poinsot poly-

hedra: the great icosahedron f3; 5
2g, the great stellated dode-

cahedron f52 ; 3g, the great dodecahedron f5; 5
2g and the small

stellated dodecahedron f52 ; 5g. (The fractional entries 5
2 indi-

cate that the corresponding faces or vertex-figures are star-

pentagons.) These nine examples are the classical regular

polyhedra.

The remaining nine finite regular polyhedra are the Petrie

duals of the nine classical regular polyhedra. The Petrie dual of

a regular polyhedron is (usually) a new regular polyhedron

with the same vertices and edges, obtained by replacing the

faces by the Petrie polygons. The Petrie dual of the Petrie dual

of a regular polyhedron is the original polyhedron. For

example, the four (skew hexagonal) Petrie polygons of the

cube form the faces of the Petrie dual of the cube, which is

usually denoted f6; 3g4 and is shown in Fig. 1. (The suffix

indicates the length of the Petrie polygon, 4 in this case.) The

underlying abstract polyhedron corresponds to a map with

four hexagonal faces on the torus.

4.2. Apeirohedra

The 30 apeirohedra fall into three families comprised of the

six planar, the 12 ‘reducible’ and the 12 ‘irreducible’ examples.

Their symmetry groups are crystallographic groups. The use of

the terms ‘reducible’ and ‘irreducible’ for apeirohedra is

consistent with what we observe at the group level: the

symmetry group is affinely reducible or affinely irreducible,

respectively. In saying that a group of isometries of E3 is

affinely reducible, we mean that there is a line l in E3 such that

the group permutes the lines parallel to l; the group then also

permutes the planes perpendicular to l.

The six planar apeirohedra can be disposed of quickly: they

are just the regular tessellations

f3; 6g; f6; 3g; f4; 4g

in the plane E2 by triangles, hexagons and squares, respec-

tively, as well as their Petrie duals,

f1; 6g3; f1; 3g6; f1; 4g4;

which have zigzag faces.

4.3. Blended apeirohedra

The ‘reducible’ apeirohedra are blends, in the sense that

they are obtained by ‘blending’ a plane apeirohedron with a

linear polygon (that is, a line segment f g or an apeirogon f1g)

contained in a line perpendicular to the plane. Thus there are

6� 2 ¼ 12 such blends.

The two projections of a blended apeirohedron onto its

component subspaces recover the two original components,

that is, the original plane apeirohedron as well as the line

segment or apeirogon.

For example, the blend of the square tessellation in E2 with

a line segment ½�1; 1	 positioned along the z axis in E3 has its

vertices in the planes z ¼ �1 and z ¼ 1 parallel to E2, and is

obtained from the square tessellation f4; 4g in E2 by alter-

research papers

208 Egon Schulte � Skeletal approach to polyhedra Acta Cryst. (2014). A70, 203–216



nately raising or lowering (alternate) vertices (see Fig. 3). Its

faces are tetragons (skew squares), with vertices alternating

between the two planes. Its designation is f4; 4g#f g, where #
indicates the blending operation.

The blend of the square tessellation in E2 with a linear

apeirogon positioned along the z axis is more complicated. Its

faces are helical polygons rising in two-sided infinite vertical

towers above the squares of the tessellation in such a way that

the helical polygons over adjacent squares have opposite

orientations (left-handed or right-handed) and meet along

every fourth edge as they spiral around the towers. The

designation in this case is f4; 4g#f1g (Fig. 4).

Strictly speaking, each blended apeirohedron belongs to an

infinite family of apeirohedra obtained by (relative) rescaling

of the two components of the blend; that is, each blended

regular apeirohedron really represents a one-parameter

family (of mutually non-similar) regular apeirohedra with the

same combinatorial characteristics.

The six blends of a planar apeirohedron with a line segment

f g are listed in Table 1. They have their vertices in two parallel

planes and hence are not 3-periodic. Thus their edge graph

cannot be a net.

The edge graphs of the apeirohedra in the first two rows of

Table 1 are planar graphs, but they do not lie in a plane. In fact,

the graphs are isomorphic to the edge graphs of the regular

square tessellation f4; 4g or triangle tessellation f3; 6g,

respectively; this can be seen be projecting them onto the

plane of the planar component of the blend. It follows that,

under certain conditions, these apeirohedra have an edge

graph that occurs as the contact graph of a sphere packing

arrangement with spheres centered at the vertices. In fact, in

order to have a faithful representation of the edge graph as a

contact graph, the edges must be short enough to avoid

forbidden contacts or overlaps between two spheres centered

at vertices which are not joined by an edge. This condition

depends on the relative scaling of the components of the blend

but is satisfied if the line segment in the blend is short

compared with the edge length of the planar apeirohedron in

the blend (that is, if the two parallel planes containing the

vertices of the blend are close to each other). The resulting

sphere packings then are the sphere packings 44IV and 36III of

Koch & Fischer (1978, pp. 131–133).

On the other hand, the edge graphs of the apeirohedra in

the third row of Table 1 cannot be contact graphs of sphere

packing arrangements (for any relative scaling of the

components of the blend), as there always are forbidden

overlaps.

On the other hand, the blends with the linear apeirogon

f1g have 3-periodic edge graphs and hence yield highly

symmetric nets. These nets were already identified in O’Keeffe

(2008) and are listed in Table 2 using the notation for nets

described earlier.

4.4. Pure apeirohedra

The 12 irreducible, or pure, regular apeirohedra fall into a

single family, derived from the cubical tessellation in E3 and

illustrated in the diagram of Fig. 5 taken from McMullen &

Schulte (2002, ch. 7E). There are a number of relationships

between these apeirohedra indicated on the diagram such as

duality �, Petrie duality � and facetting ’2, as well as the

operations �, � and �� which are not further discussed here.

The facetting operation ’2 applied to a regular polyhedron is
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Figure 4
The four helical facets of the blended apeirohedron f4; 4g#f1g that share
a vertex. Each vertical column over a square of the square tessellation is
occupied by exactly one facet of f4; 4g#f1g, spiraling around the column.

Table 1
The edge graphs of the blends of a planar regular apeirohedron with a
line segment.

Petrie-dual apeirohedra have the same edge graph and are listed in the same
row. Where applicable, the third column lists the corresponding sphere
packing of Koch & Fischer (1978).

Blend
Sphere
packing

f4; 4g#f g f1; 4g4#f g 44IV
f3; 6g#f g f1; 6g3#f g 36III
f6; 3g#f g f1; 3g6#f g

Table 2
The nets of the blends of a planar regular apeirohedron with a linear
apeirogon.

Petrie-dual apeirohedra have the same net and are listed in the same row.

Blend Net

f4; 4g#f1g f1; 4g4#f1g dia
f3; 6g#f1g f1; 6g3#f1g pcu
f6; 3g#f1g f1; 3g6#f1g acs

Figure 3
The blend of the square tessellation with the line segment. The vertices lie
in two parallel planes, and over each square of the original square
tessellation lies one skew square (tetragon) of the blend.



reminiscent of the Petrie-duality operation, in that the vertices

and edges of the polyhedron are retained and the faces are

replaced by certain edge paths, in this case the 2-holes; here, a

2-hole, or simply hole, of a polyhedron is an edge path which

leaves a vertex by the second edge from which it entered,

always in the same sense (on the left, say, in some local

orientation).

The most prominent apeirohedra of Fig. 5 are the three

Petrie–Coxeter polyhedra f4; 6j4g, f6; 4j4g and f6; 6j3g,

occurring in the top and bottom row; the last entry in the

symbols records the length of the holes, 4 or 3 in this case,

while the first two entries give the standard Schläfli symbol.

These well known apeirohedra are the only regular polyhedra

in E3 with convex faces and skew vertex-figures.

The Petrie duals of the Petrie–Coxeter polyhedra (related

to the Petrie–Coxeter polyhedra under �) have helical faces

given by the Petrie polygons of the original polyhedron. The

first subscript in their designation gives the length of their

own Petrie polygons, and the second subscript that of their

2-zigzags (edge paths leaving a vertex by the second edge,

alternately on the right or left).

Table 3 is a breakdown of the pure regular apeirohedra by

mirror vectors, which also helps in understanding why there

are exactly 12 examples (McMullen & Schulte, 2002, ch. 7E). If

K is a regular polyhedron and R0;R1;R2 denote the distin-

guished involutory generators for its symmetry group G, the

mirror vector ðd0; d1; d2Þ of K records the dimensions d0, d1

and d2 of the mirrors (fixed-point sets) of R0, R1 and R2,

respectively.

It turns out that, mostly due to the irreducibility, only four

mirror vectors can occur, namely ð2; 1; 2Þ, ð1; 1; 2Þ, ð1; 2; 1Þ and

ð1; 1; 1Þ. For example, the three apeirohedra with mirror

vector ð1; 1; 1Þ in the last row have a symmetry group gener-

ated by three half-turns (reflections in lines) and therefore

have only proper isometries as symmetries; these helix-faced

apeirohedra occur geometrically in two enantiomorphic forms,

yet they are geometrically regular, not chiral!

While the rows in Table 3 represent a breakdown of the

pure apeirohedra by mirror vector, the second, third and

fourth columns can similarly be seen as grouping the apeir-

ohedra by the crystallographic Platonic solid (the tetrahedron,

octahedron or cube) with which each is associated in a manner

described below; or, equivalently, as grouping by the corre-

sponding (Platonic) symmetry group.

To explain this, suppose K is a pure regular apeirohedron

and G ¼ hR0;R1;R2i, where again R0;R1;R2 are the distin-

guished generators. Then R1 and R2, but not R0, fix the base

vertex, the origin o (say), of K. Now consider the translate of

the mirror of R0 that passes through o, and let R00 denote the

reflection in this translate. If T denotes the translation

subgroup of G, then G0 :¼ hR00;R1;R2i is a finite irreducible

group of isometries isomorphic to the special group G=T of G,

the quotient of G by its translation subgroup. Now alter (if

needed) the generators R00;R1;R2 as follows. If a generator

is a half-turn (with one-dimensional mirror), replace it by

the reflection in the plane through o perpendicular to its

rotation axis; otherwise leave the generator unchanged. Let
bRR0;bRR1;bRR2, respectively, denote the plane reflections derived

in this manner from R00;R1;R2, and let bGG :¼ hbRR0;bRR1;bRR2i

denote the finite irreducible reflection group in E3 generated

by them.

Now since G has to be discrete, bGG cannot contain fivefold

rotations. Hence there are only three possibilities for bGG and its

generators, namely bGG is the symmetry group of the tetra-

hedron f3; 3g, octahedron f3; 4g or cube f4; 3g. Bearing in mind

that there are just four possible mirror vectors, this then

establishes that there are only 12 ¼ 4� 3 pure regular

apeirohedra. Note that G0 is either again one of these finite

reflection groups, or the rotation subgroup of one of these

groups [the latter happens only when the mirror vector is

ð1; 1; 1Þ].

Table 3 also gives details about the geometry of the faces

and vertex-figures. It is quite remarkable that in a pure regular

apeirohedron with finite faces, the faces and vertex-figures

cannot both be planar or both be skew. As we will see, this is

very different for chiral polyhedra.

The nets of the pure regular apeirohedra were identified in

O’Keeffe (2008) and are listed in Table 4.
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Table 3
Breakdown of the pure regular apeirohedra by mirror vector.

Mirror
vector f3; 3g f3; 4g f4; 3g Faces

Vertex-
figures

(2, 1, 2) f6; 6j3g f6; 4j4g f4; 6j4g Planar Skew
(1, 1, 2) f1; 6g4;4 f1; 4g6;4 f1; 6g6;3 Helical Skew
(1, 2, 1) f6; 6g4 f6; 4g6 f4; 6g6 Skew Planar
(1, 1, 1) f1; 3gðaÞ f1; 4g
;�3 f1; 3gðbÞ Helical Planar

Table 4
The nets of the pure regular apeirohedra.

Pairs of Petrie duals share the same net and are listed in the same row. The last
two apeirohedra are self-Petrie.

Apeirohedron Net

f4; 6j4g f1; 6g4;4 pcu
f6; 4j4g f1; 4g6;4 sod
f6; 6j3g f1; 6g6;3 crs
f4; 6g6 f6; 6g4 hxg
f1; 3gðaÞ f1; 3gðbÞ srs
f6; 4g6 nbo
f1; 4g
;�3 nbo

Figure 5
Relationships among the 12 pure regular apeirohedra.



5. Chiral polyhedra

The classification of chiral polyhedra in ordinary

space E3 is rather involved. It begins with the

observation that chirality, as defined here, does

not occur in the classical theory, so in particular

there are no convex polyhedra that are chiral.

The chiral polyhedra in E3 fall into six infinite

families (Schulte, 2004, 2005), each with two or

one free parameters depending on whether the

classification is up to congruence or similarity,

respectively. Each chiral polyhedron is a non-

planar ‘irreducible’ apeirohedron (with an affi-

nely irrreducible symmetry group), so in particular there are

no finite, planar or ‘reducible’ examples.

The six families comprise three families of apeirohedra with

finite skew faces and three families of apeirohedra with infinite

helical faces. It is convenient to slightly enlarge each family by

allowing the parameters to take certain exceptional values

which would make the respective polyhedron regular and, in

some cases, finite. The resulting larger families will then

contain exactly two regular polyhedra, while all other poly-

hedra are chiral apeirohedra.

5.1. Finite-faced polyhedra

The three families with finite faces only contain apeirohedra

and are summarized in Table 5. These apeirohedra are para-

metrized by two integers which are relatively prime (and not

both zero). In fact, the corresponding apeirohedra exist also

when the parameters are real, but they are discrete only when

the parameters are integers.

Membership in these families is determined by the basic

Schläfli symbol, namely f6; 6g, f4; 6g or f6; 4g. The corre-

sponding apeirohedra are denoted Pða; bÞ, Qðc; dÞ and

Qðc; dÞ
�, respectively, where the star indicates that the

apeirohedon Qðc; dÞ
� in the third family is the dual of the

apeirohedron Qðc; dÞ in the second family. The duality of the

apeirohedra Qðc; dÞ and Qðc; dÞ
� is geometric, in that the face

centers of one are the vertices of the other. The apeirohedra

Pða; bÞ and Pðb; aÞ similarly are geometric duals of each other

(again with the roles of vertices and face centers inter-

changed), and Pðb; aÞ is congruent to Pða; bÞ. Thus Pða; bÞ is

geometrically self-dual, in the sense that its dual Pða; bÞ
�
¼

Pðb; aÞ is congruent to Pða; bÞ.

The chiral apeirohedra in each family have skew faces and

skew vertex-figures. However, the two regular apeirohedra in

each family have either planar faces or planar vertex-figures.

In either case, the distinguished generators S1; S2 of the

symmetry groups G of an apeirohedron in the family are

rotatory reflections defined in terms of the parameters a; b or

c; d, and the symmetry T :¼ S1S2 is a half-turn.

For example, for the apeirohedron Pða; bÞ of type f6; 6g the

symmetries S1, S2 and T are given by

S1: ðx1; x2; x3Þ 7! ð�x2; x3; x1Þ þ ð0;�b;�aÞ;
S2: ðx1; x2; x3Þ 7! �ðx3; x1; x2Þ;
T: ðx1; x2; x3Þ 7! ð�x1; x2;�x3Þ þ ða; 0; bÞ:

Then the apeirohedron Pða; bÞ itself is obtained from the

group G generated by S1; S2 by means of Wythoff’s

construction as explained above. The base vertex F0 in this

case is the origin o (fixed under S2), and the base edge F1 is

given by fo; ug with

u :¼ TðoÞ ¼ ða; 0; bÞ:

The base edge F1 lies in the x1x3 plane and is perpendicular to

the rotation axes of T, which in turn is parallel to the x2 axis

and passes through 1
2 u. The base face F2 of P is determined by

the orbit of o under hS1i and is given by the generally skew

hexagon with vertex-set

fð0; 0; 0Þ; ð0;�b;�aÞ; ðb;�a� b;�aÞ;

ðaþ b;�a� b;�aþ bÞ; ðaþ b;�a; bÞ; ða; 0; bÞg;

where the vertices are listed in cyclic order. The vertices of

Pða; bÞ adjacent to o are given by the orbit of u under hS2i,

namely

fða; 0; bÞ; ð�b;�a; 0Þ; ð0; b; aÞ;

ð�a; 0;�bÞ; ðb; a; 0Þ; ð0;�b;�aÞg;

these are the vertices of the generally skew hexagonal vertex-

figure of Pða; bÞ at o, listed in the order in which they occur in

the vertex-figure. The faces of Pða; bÞ containing the vertex o

are the images of F2 under the elements of hS2i. Each face is a

generally skew hexagon with vertices given by one half of the

vertices of a hexagonal prism. As mentioned earlier, both the

faces and vertex-figures are skew if Pða; bÞ is chiral.

The apeirohedra Pða; bÞ are chiral except when b ¼ �a. If

b ¼ a we arrive at the Petrie–Coxeter polyhedron f6; 6j3g,

which has planar (convex) faces but skew vertex-figures. If

b ¼ �a we obtain the regular polyhedron f6; 6g4, which has

skew faces but planar (convex) vertex-figures. The vertices of

f6; 6g4 comprise the vertices in one set of alternate vertices of

the Petrie–Coxeter polyhedron f4; 6j4g, while the faces of

f6; 6g4 are the vertex-figures at the vertices in the other set of

alternate vertices of f4; 6j4g.

Table 5 also lists the structure of the special groups. Here

½p; q	 denotes the full symmetry group of a Platonic solid

fp; qg, and ½p; q	þ its rotation subgroup; also �I stands for the

point reflection in o.
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Table 5
The three families of finite-faced chiral apeirohedra and their related regular
apeirohedra.

Schläfli symbol

f6; 6g f4; 6g f6; 4g

Notation Pða; bÞ Qðc; dÞ Qðc; dÞ�

Parameters a; b 2 Z, c; d 2 Z, c; d 2 Z,
ða; bÞ ¼ 1 if b 6¼ �a ðc; dÞ ¼ 1 if c; d 6¼ 0 ðc; dÞ ¼ 1 if c; d 6¼ 0

Special group ½3; 3	þ � h�Ii ½3; 4	 ½3; 4	
Regular apeirohedra Pða;�aÞ¼f6;6g4 Qðc;0Þ¼f4;6g6 Qðc;0Þ� ¼f6;4g6

Pða;aÞ¼f6;6j3g Qð0;cÞ¼f4;6j4g Qð0;cÞ� ¼f6;4j4g
Geom. self-dual Pða; bÞ� ffi Pða; bÞ



5.2. Helix-faced polyhedra

The three families of helix-faced chiral apeirohedra and

their related regular polyhedra are summarized in Table 6.

The corresponding apeirohedra or polyhedra are denoted by

P1ða; bÞ, P2ðc; dÞ and P3ðc; dÞ. Each family has two real-valued

parameters that cannot both be zero. Now the discreteness

assumption does not impose any further restrictions on the

parameters.

Membership in these families is determined by the basic

Schläfli symbol as well as the basic geometry of the helical

faces. There are two families of type f1; 3g and one family of

type f1; 4g. In the first family of type f1; 3g the apeirohedra

have helical faces over triangles, and in the second family they

have helical faces over squares. Each family contains two

regular polyhedra, namely one pure regular apeirohedron as

well as one (finite crystallographic) Platonic solid, that is, the

tetrahedron, cube or octahedron, respectively,

The symmetry groups G of the polyhedra P1ða; bÞ, P2ðc; dÞ

and P3ðc; dÞ are generated by a screw motion S1 (a rotation

followed by a translation along the rotation axis) and an

ordinary rotation S2 in an axis through the base vertex

F0 :¼ o. The screw motion S1 moves the vertices of the helical

base face F2 (in an apeirohedron) one step along the face, and

S2 applied to the vertex u of the base edge F1 distinct from

o produces the planar vertex-figure at o. The symmetry

T ¼ S1S2 is again a half-turn with a rotation axis passing

through 1
2 u and perpendicular to F1.

For example, for the polyhedron P2ðc; dÞ the symmetries S1,

S2 and T are given by

S1: ðx1; x2; x3Þ 7! ð�x3; x2; x1Þ þ ðd; c;�cÞ;
S2: ðx1; x2; x3Þ 7! ðx2; x3; x1Þ;
T: ðx1; x2; x3Þ 7! ðx2; x1;�x3Þ þ ðc;�c; dÞ:

The polyhedron P2ðc; dÞ itself is again obtained from

G ¼ hS1; S2i by Wythoff’s construction with base vertex

F0 ¼ o. The base edge F1 is given by f0; ug with

u :¼ TðoÞ ¼ ðc;�c; dÞ;

and lies in the plane x2 ¼ �x1. The half-turn T interchanges

the vertices o and u of F1, and its rotation axis is parallel (in

E
3) to the line x2 ¼ x1 in the x1x2 plane and perpendicular to

the plane x2 ¼ �x1. The screw motion S1 shifts the base face

F2 one step along itself, and since S4
1 is the translation along

the x2 axis by ð0; 4c; 0Þ, we have helical faces over squares

(when c 6¼ 0) spiraling around an axis parallel to the x2 axis. In

particular, the vertex-set of F2 is the orbit of o under hS1i and

is given by

fðc;�c; dÞ; ð0; 0; 0Þ; ðd; c;�cÞ; ðcþ d; 2c;�cþ dÞg þ Z
t

with t :¼ ð0; 4c; 0Þ. Here the notation means that the four

vectors listed on the left side are successive vertices of F2

whose translates by integral multiples of t comprise all the

vertices of F2.

When c ¼ 0 we obtain a finite polyhedron P2ð0; dÞ, a cube

f4; 3g with a finite group G, namely the rotation subgroup of

the symmetry group of this cube. In fact, in this case S4
1 is the

identity mapping and the base face F2 itself is a square (not a

helical polygon over a square).

In the general case, as usual, all other vertices, edges and

faces of the apeirohedron (or polyhedron) are the images of

F0, F1 and F2 under the group G. Moreover, the vertices

adjacent to o form the triangular vertex-figure at o and are

given by the three points

u ¼ ðc;�c; dÞ; S2ðuÞ ¼ ð�c; d; cÞ; S2
2ðuÞ ¼ ðd; c;�cÞ

in the plane x1 þ x2 þ x3 ¼ d.

5.3. General properties

The six families of chiral apeirohedra and related regular

polyhedra have stunning geometric and combinatorial prop-

erties and exhibit some rather unexpected phenomena.

For all three families of apeirohedra with finite faces it is

almost true that different parameter values give combinato-

rially non-isomorphic apeirohedra (that is, the underlying

abstract apeirohedra are non-isomorphic). More explicitly,

Pða; bÞ and Pða0; b0Þ are combinatorially isomorphic if and

only if

ða0; b0Þ ¼ �ða; bÞ;�ðb; aÞ;

and similarly, Qðc; dÞ and Qðc0; d0Þ, and hence Qðc; dÞ� and

Qðc0; d0Þ
�, are combinatorially isomorphic if and only if

ðc0; d0Þ ¼ �ðc; dÞ;�ð�c; dÞ:

This phenomenon is perhaps even more surprising when

expressed in terms of the similarity classes of the apeirohedra

within each family, which are parametrized by a single rational

parameter, namely a=b or c=d (when b; d 6¼ 0). These simi-

larity classes exhibit a very strong discontinuity, in that any

small positive change in the rational parameter produces a

new similarity class in which the apeirohedra are not combi-

natorially isomorphic to those in the original similarity class.

By contrast, in the three families of helix-faced apeirohedra

and related polyhedra, each chiral apeirohedron is combina-

torially isomorphic to the regular apeirohedron in its family, so

in particular it is combinatorially regular, but not geome-

trically regular (Pellicer & Weiss, 2010). In fact, the chiral

apeirohedra in each family can be viewed as ‘chiral defor-

mations’ of the regular apeirohedron in this family. At the

research papers

212 Egon Schulte � Skeletal approach to polyhedra Acta Cryst. (2014). A70, 203–216

Table 6
The three families of helix-faced chiral apeirohedra and their related
regular polyhedra.

Schläfli symbol

f1; 3g f1; 3g f1; 4g

Notation P1ða; bÞ P2ðc; dÞ P3ðc; dÞ
Parameters a; b 2 R; c; d 2 R; c; d 2 R;

ða; bÞ 6¼ ð0; 0Þ ðc; dÞ 6¼ ð0; 0Þ ðc; dÞ 6¼ ð0; 0Þ
Helices over Triangles Squares Triangles
Vertex-figures Triangles Triangles (Planar) squares
Special group ½3; 3	þ ½3; 4	þ ½3; 4	þ

Relationships Pða; bÞ’2 Qðc; dÞ’2 ðQðc; dÞ�Þ�

Regular polyhedra P1ða;�aÞ P2ðc; 0Þ P3ð0; dÞ
¼ f1; 3gðaÞ ¼ f1; 3gðbÞ ¼ f1; 4g
;�3
P1ða; aÞ¼f3; 3g P2ð0; dÞ¼f4; 3g P3ðc; 0Þ¼f3; 4g

self-Petrie



other extreme they also allow a ‘deformation’ to the finite

regular polyhedron (Platonic solid) in the family.

On the other hand, the finite-faced chiral apeirohedra are

also combinatorially chiral (Pellicer & Weiss, 2010). In other

words, these apeirohedra are intrinsically chiral and thus not

combinatorially isomorphic to a regular apeirohedron in their

family.

In some sense, each chiral helix-faced apeirohedron can be

thought of as unraveling the Platonic solid in its family. In fact,

for all parameter values a; b and c; d we have the following

coverings of polyhedra:

P1ða; bÞ7!f3; 3g; P2ðc; dÞ7!f4; 3g; P3ðc; dÞ7!f3; 4g:

Informally speaking, under these coverings each helical face is

‘compressed’ (like a spring) to become a polygon (triangle or

square) over which it has been rising.

The nets arising as edge graphs of chiral polyhedra in E3 will

be analyzed in a forthcoming paper.

6. Regular polygonal complexes

We now turn to polygonal complexes with possibly more than

two faces meeting at an edge. All regular polygonal complexes

that are not polyhedra turn out to be infinite and have an

affinely irreducible symmetry group.

Unlike a regular polyhedron, a regular polygonal complex

K can have a symmetry group that is transitive, but not simply

transitive, on the flags. As we mentioned earlier, K then has

face mirrors, meaning that K has planar faces and that each

flag stabilizer is generated by the reflection in the plane

through the (planar) face in the flag.

The classification of regular polygonal complexes naturally

breaks down into two cases, namely the enumeration of the

simply flag-transitive complexes and that of the non-simply

flag-transitive complexes (Pellicer & Schulte, 2010, 2013).

All regular polyhedra, finite or infinite, are simply flag-

transitive polygonal complexes.

6.1. Non-simply flag-transitive complexes as 2-skeletons

For a regular polygonal complex K with a non-simply flag-

transitive symmetry group G, the existence of face mirrors

allows us to recognize K as the 2-skeleton of a certain type of

incidence structure of rank 4 in E
3, called a 4-apeirotope

(McMullen & Schulte, 2002, ch. 7F). Thus K consists of the

vertices, edges and faces (of rank 2) of this 4-apeirotope. The

2-skeleton of the cubical tessellation shown in Fig. 2 is an

example of a regular polygonal complex of this kind, and the

underlying cubical tessellation is the corresponding 4-apeiro-

tope.

The 4-apeirotopes involved are themselves regular, in the

sense that they have a flag-transitive symmetry group on their

own (coinciding with G); in fact, the generating reflection of

the base-flag stabilizer forK is the fourth involutory generator

needed to suitably generate the symmetry group of this rank-4

structure.

There are eight regular 4-apeirotopes in E3, occurring in

four pairs of ‘Petrie duals’ (McMullen & Schulte, 2002, ch. 7F).

The apeirotopes in each pair have the same 2-skeleton and

produce the same polygonal complex. Thus, up to similarity

there are four non-simply flag-transitive complexes in E3, each

with the same symmetry group as its two respective apeir-

otopes. The 2-skeleton of the cubical tessellation has square

faces and is the only example of a non-simply flag-transitive

regular polygonal complex with finite faces. The three other

complexes all have (planar) zigzag faces, with either three or

four faces meeting at each edge.

In Table 7 we list the four pairs of Petrie-dual regular

4-apeirotopes in E3, along with information about the regular

polygonal complexes K arising as their 2-skeletons. In parti-

cular we give the number r of faces at an edge, as well as the

structure of the vertex-figure ofK; here an entry in the vertex-

figure column of Table 7 listing a Platonic solid is meant to

represent the (geometric) edge graph of this solid. Note that in

each case the vertex-figure of the polygonal complex K is

simply the edge graph of the Platonic solid which occurs as the

vertex-figure of the regular 4-apeirotope listed in the first

column. Thus the vertex-figure column gives the structure of

the vertex-figures of both the regular polygonal complex and

the corresponding regular 4-apeirotope in the first column.

Similarly, the number r for K also coincides with the number

of faces at an edge of the corresponding 4-apeirotope.

Table 7 also identifies the underlying net of each complex,

which here coincides with the edge graphs of the two related

regular 4-apeirotopes.

6.2. Simply flag-transitive complexes

In addition to the 48 regular polyhedra described in x4 there

are 21 simply flag-transitive regular polygonal complexes in E3

which are not polyhedra, up to similarity. This gives a total of

69 simply flag-transitive regular complexes, up to similarity

and relative scaling of components for blended polyhedra.

Let K be a simply flag-transitive complex which is not a

polyhedron, that is, K has r � 3 faces at each edge. Then the

generating subgroups G0;G1;G2 of its symmetry group G

described earlier take a very specific form: G0 is generated by

a point, line or plane reflection R0; the subgroup G1 is

generated by a line or plane reflection R1; and G2 is a cyclic or

dihedral group of order r. The mirror vector ðd0; d1Þ of K

records the dimensions d0 and d1 of the mirrors of R0 and R1,

respectively. (Note that, for a polyhedron, G2 would also be

generated by a reflection and the complete mirror vector
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Table 7
The four nets arising as edge graphs of regular 4-apeirotopes in E3.

Pairs of Petrie-dual apeirotopes are listed in the same row.

Apeirotope r Vertex-figure Net

f4; 3; 4g ff4; 6 j 4g; f6; 4g3g 4 Octahedron pcu
ff1; 3g6#f g; f3; 3gg ff1; 4g4#f1g; f4; 3g3g 3 Tetrahedron dia
ff1; 3g6#f g; f3; 4gg ff1; 6g3#f1g; f6; 4g3g 4 Octahedron pcu
ff1; 4g4#f g; f4; 3gg ff1; 6g3#f1g; f6; 3g4g 3 Cube bcu



introduced earlier would list the dimensions of all three

mirrors.)

Table 8 summarizes the 21 simply flag-transitive complexes

and some of their properties. In writing Kiðj; kÞ for a complex,

ðj; kÞ indicates its mirror vector and i is its label (serial

number) in the list of regular complexes with the same mirror

vector ðj; kÞ. There are columns for the pointwise edge stabi-

lizer G2, the number r of faces at each edge, the types of faces

and vertex-figures, the vertex-set, the special group G� and the

corresponding net. In the face column we use symbols like pc,

ps,12 or1k with k ¼ 3 or 4, respectively, to indicate that the

faces are convex p-gons, skew p-gons, planar zigzags or helical

polygons over k-gons. (A planar zigzag is viewed as a helix

over a ‘2-gon’, where here a 2-gon is a line segment traversed

in both directions. Hence the use of 12.) An entry in the

vertex-figure column describing a solid figure in E3 is meant to

represent the geometric edge graph of this figure, with

‘double’ indicating the double edge graph (the edges have

multiplicity 2). The entry ‘ns-cuboctahedron’ in the vertex-

figure column stands for the edge graph of a ‘non-standard

cuboctahedron’, a certain realization with skew square faces of

the ordinary cuboctahedron.

For all but three complexes, the special group G� is the full

octahedral group ½3; 4	. In the three exceptional cases G� is the

octahedral rotation group ½3; 4	þ; note that in these cases we

must have a mirror vector ð1; 1Þ and a cyclic group G2.

For all but five complexes of Table 8 the vertex-set is a

lattice, namely one of the following, up to scaling: the standard

(‘primitive’) cubic lattice �1 :¼ Z3; the face-centered cubic

lattice �2, with basis ð1; 1; 0Þ, ð�1; 1; 0Þ, ð0;�1; 1Þ, consisting

of all integral vectors with even coordinate sum; or the body-

centered cubic lattice �3, with basis ð2; 0; 0Þ, ð0; 2; 0Þ, ð1; 1; 1Þ.

In the five exceptional cases the vertex-set is either

V :¼ �1nðð0; 0; 1Þþ�3Þ

or

W :¼ 2�2 [ ðð1;�1; 1Þþ2�2Þ;

again up to scaling.

The last column of Table 8 lists the nets of the simply flag-

transitive regular complexes which are not polyhedra. The

coordination figures of the nets are just the convex hulls of the

vertex-figures of the corresponding regular complex, ignoring

multiplicity of the edges in the vertex-figure if it occurs. For

example, the vertex-figure of the complexK1ð1; 2Þ is the graph

of an ordinary cuboctahedron and so the coordination figure

of the net for K1ð1; 2Þ is a cuboctahedron; hence the net is

quasiregular and must coincide with the face-centered cubic

lattice fcu, which we denoted by �2. The nets pcu and bcu

similarly correspond to the lattices �1 and �3, respectively.

Fig. 6 illustrates a local picture of K1ð1; 2Þ around an edge,

showing the four skew square faces meeting at the edge. The

entire complex can be thought of as being built from an infi-

nite family of Petrie duals of regular tetrahedra inscribed in

cubes, one per cube of the cubical tessellation, such that the

Petrie duals in adjacent cubes share a common edge and have

opposite orientation. Thus the complex has infinitely many

‘small’ finite subcomplexes, each a regular polyhedron in itself.

Figs. 7 and 8 depict the local structure around a vertex for

two further simply flag-transitive regular complexes with
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Figure 6
The four skew square faces of K1ð1; 2Þ sharing an edge. Each face is a
Petrie polygon of a regular tetrahedron inscribed in a cube of the cubical
tessellation. The tetrahedra in adjacent cubes have different orientations.
The net is fcu.

Table 8
The 21 simply flag-transitive regular complexes in E3 which are not
polyhedra, and their nets.

Complex G2 r Face Vertex-figure
Vertex-
set G� Net

K1ð1; 2Þ D2 4 4s Cuboctahedron �2 ½3; 4	 fcu
K2ð1; 2Þ C3 3 4s Cube �3 ½3; 4	 bcu
K3ð1; 2Þ D3 6 4s Double cube �3 ½3; 4	 bcu
K4ð1; 2Þ D2 4 6s Octahedron �1 ½3; 4	 pcu
K5ð1; 2Þ D2 4 6s Double square V ½3; 4	 nbo
K6ð1; 2Þ D4 8 6s Double octahedron �1 ½3; 4	 pcu
K7ð1; 2Þ D3 6 6s Double tetrahedron W ½3; 4	 dia
K8ð1; 2Þ D2 4 6s Cuboctahedron �2 ½3; 4	 fcu
K1ð1; 1Þ D3 6 13 Double cube �3 ½3; 4	 bcu
K2ð1; 1Þ D2 4 13 Double square V ½3; 4	 nbo
K3ð1; 1Þ D4 8 13 Double octahedron �1 ½3; 4	 pcu
K4ð1; 1Þ D3 6 14 Double tetrahedron W ½3; 4	 dia
K5ð1; 1Þ D2 4 14 ns-cuboctahedron �2 ½3; 4	 fcu
K6ð1; 1Þ C3 3 14 Tetrahedron W ½3; 4	þ dia
K7ð1; 1Þ C4 4 13 Octahedron �1 ½3; 4	þ pcu
K8ð1; 1Þ D2 4 13 ns-cuboctahedron �2 ½3; 4	 fcu
K9ð1; 1Þ C3 3 13 Cube �3 ½3; 4	þ bcu
Kð0; 1Þ D2 4 12 ns-cuboctahedron �2 ½3; 4	 fcu
Kð0; 2Þ D2 4 12 Cuboctahedron �2 ½3; 4	 fcu
Kð2; 1Þ D2 4 6c ns-cuboctahedron �2 ½3; 4	 fcu
Kð2; 2Þ D2 4 3c Cuboctahedron �2 ½3; 4	 fcu

Figure 7
The faces of K4ð1; 2Þ are the Petrie polygons of alternate cubes in the
cubical tessellation of E3. For every cube occupied, all its Petrie polygons
occur as faces of K4ð1; 2Þ. Shown are the 12 faces of K4ð1; 2Þ that have a
vertex in common, here located at the center. Each edge containing this
vertex lies in four faces. The vertex-figure of K4ð1; 2Þ at the central vertex
is the octahedron spanned by the six outer black nodes. The net is pcu.



mirror vector ð1; 2Þ, namely K4ð1; 2Þ and K5ð1; 2Þ. They also

are related to the cubical tessellation and their nets are pcu

and nbo, respectively.

It turns out that the edge graph of each simply flag-

transitive regular complexK is a regular or quasiregular net in

the sense described earlier. This can be seen as follows. It is

clear that the net is uninodal, since the symmetry group of K

acts transitively on the vertices of K and is a subgroup of the

symmetry group of the net.

If the vertex-figure ofK is a cuboctahedron or non-standard

(ns) cuboctahedron, then the coordination figures of the net

are convex cuboctahedra. Hence the net is quasiregular and

must coincide with fcu. Note here that the argument also

applies if the vertex-figures of K are ns-cuboctahedra, that is,

when K is one of the four complexes K5ð1; 1Þ, K8ð1; 1Þ, Kð0; 1Þ

and Kð2; 1Þ. In these four cases, the edges in the vertex-figure

connect pairs of vertices of the standard cuboctahedron which

are midpoints of edges two steps apart on a Petrie polygon of

the cube used to construct the cuboctahedron as the convex

hull of the midpoints of its edges. However, an edge in the

vertex-figure of a polygonal complex at a given vertex repre-

sents a face of the complex that contains this vertex, in that it

joins the two vertices of the face that are adjacent to the given

vertex in the complex. Thus the edges of the vertex-figure

capture the faces of the complex, not its underlying net. The

local structure of the net is only determined by the vertices of

the vertex-figure, not its edges.

For all other regular complexes K, except K2ð1; 2Þ and

K4ð1; 2Þ, we can appeal to the classification of regular nets. In

fact, the coordination figures of the net of K are easily seen to

be squares, tetrahedra, octahedra or cubes, and the vertex-

figure subgroup GF0
¼ hR1;G2i of the symmetry group G at

the base vertex of K contains (at least) the rotation symmetry

group of the coordination figure at this vertex of the net. In the

case of the square, the rotational symmetries are taken relative

to E3. Thus the complex K has enough symmetries to guar-

antee that its edge graph is a regular net.

The situation changes for the complexes K2ð1; 2Þ and

K4ð1; 2Þ with cubes and octahedra as coordination figures,

respectively. Now the vertex-figure subgroups are too small to

imply regularity of the net based on symmetries of K; these

subgroups are given by ½3; 3	þ � h�Ii and ½3; 3	, respectively.

However, K2ð1; 2Þ is a subcomplex of K3ð1; 2Þ with the same

edge graph, and the latter is the regular net bcu by our

previous analysis. Thus the net of K2ð1; 2Þ also is bcu. Simi-

larly, K4ð1; 2Þ is a subcomplex of K6ð1; 2Þ with the same edge

graph, namely the edge graph of the cubical tessellation of E3

(see Fig. 7), which is the regular net pcu.

Thus the edge graphs of all regular polygonal complexes

which are not polyhedra, simply flag-transitive or not, are

regular or quasiregular nets. The regular net srs does not occur

in this but all others do; however, srs is the net of two pure

regular polyhedra with helical faces (see Table 4).

I am grateful to Davide Proserpio for making me aware of

the extensive work on crystal nets that has appeared in the

chemistry literature, as well as for valuable comments about

the history of nets research and the notation for nets used by

crystallographers. I am also indebted to the anonymous

referees for a number of helpful suggestions that have

improved the article.
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Figure 8
The faces of K5ð1; 2Þ are Petrie polygons of cubes in the cubical
tessellation of E3. For every cube of the tessellation, only one of its Petrie
polygons is a face of K5ð1; 2Þ. Shown are the eight faces of K5ð1; 2Þ that
have a vertex in common, here located at the center. Each edge
containing this vertex lies in four faces. The vertex-figure of K5ð1; 2Þ at
the central vertex is the double square spanned by the four outer black
nodes in the horizontal plane through the center. The net is nbo.
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